ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ETIENNE, DES MINES DE NANCY.

DES TELECOMMUNICATIONS DE BRETAGNE,

ÉCOLE POLYTECHNIQUE

(Option T.A.)
CONCOURS D'ADMISSION 1992
MTHEMATIOUES
DEUXIÈME EPREUVE
OPTION M

(Durée de l'épreuve : 4 heures)

Les candidats sont pries de mentionner de façon apparente sur la première page de la copie : MATHÉ-MATIQUES II-M.

L'énoncé de cette épreuve, particulière aux candidats de l'option M, comporte 4 pages.

NOTATIONS ET OBJECTIFS

n désigne un entier supérieur strictement à 1 et E l'ensemble des matrices carrées (n,n) à termes reels, tA est la matrice transposée de A.

Les vecteurs x, y, ... de \mathbb{R}^n seront désignes aussi par des matrices colonnes X, Y, ..., \mathbb{R}^n sera muni du produit scalaire (.|.) défini par : $(x|y) = (X|Y) = {}^t XY$.

La norme d'un vecteur X de sera notée |X|. L'espace vectoriel E sera muni du produit scalaire ((.|.)) défini par : $((A|B)) = \operatorname{tr}({}^t\!AB)$. Le couple (E,((.|.))) est un espace euclidien. La norme d'une matrice A sera notée $\|A\|$.

(Rappel : la trace du produit AB est égale à la trace de BA lorsque les produits AB et BA sont des matrices carrées.)

Le but du problème est de montrer que pour une matrice M donnée, il est possible de trouver une matrice P de rang inférieur à celui de M, telle que la distance de M à P soit la plus petite possible.

Première partie

Étude des matrices de rang 1

I-1 Factorisation des matrices de rang 1

- a) Soit m un endomorphisme de \mathbb{R}^n . Démontrer que m est de rang 1 si, et seulement si, s'il existe un vecteur a de \mathbb{R}^n et une forme linéaire u définie sur \mathbb{R}^n , non nuls, tels que pour tout vecteur x de \mathbb{R}^n , m(x) = u(x)a.
 - Déterminer la matrice M associée à cet endomorphisme m dans la base canonique de \mathbb{R}^n .
 - EXEMPLE : Expliciter M lorsque $a=e_i$ et $u=e_j^*$ ($(e_i)_{1\leq i\leq n}$ est la base canonique de \mathbb{R}^n , $(e_i^*)_{1\leq i\leq n}$ est la base duale associée.)
- b) En déduire l'expression générale d'une matrice M de rang 1 à l'aide du produit d'une matrice colonne X et d'une matrice ligne tY .
- c) Établir les relations qui lient les matrices colonnes X, X' et Y, Y' lorsqu'une même matrice M de rang 1 est égale aux produits X^tY et X'^tY' .

- I-2 Rang d'une famille de matrices de rang 1
 - a) Démontrer que toute matrice M est égale à une somme de matrices de rang 1.
 - b) Soient $(X_1, X_2, ..., X_n)$ et $(Y_1, Y_2, ..., Y_n)$ deux bases de \mathbb{R}^n , démontrer que la suite des matrices $(X_i^t Y_j)_{(1 \le i, j \le n)}$ est une base de E.
 - c) Soient deux familles de vecteurs de \mathbb{R}^n $(U_1, U_2, ..., U_p)$ et $(V_1, V_2, ..., V_q)$ de rang r et s. Déterminer le rang de la famille des matrices $(U_i^t V_j)_{(1 \le i \le p, 1 \le j \le q)}$ considérées comme vecteurs de E.
- I-3 Orthogonalité de matrices de rang 1 dans (E, ((.|.)))
 - a) A quelle condition sur les vecteurs X, X', Y, Y' de \mathbb{R}^n , les matrices X^tY et X'^tY' sont-elles orthogonales dans (E, ((.|.)))?
 - b) En déduire comment choisir deux suites $(X_i)_{1 \leq i \leq n}$ et $(Y_i)_{1 \leq i \leq n}$ de vecteurs de \mathbb{R}^n , pour que la suite des matrices $(X_i^t Y_j)_{1 \leq i,j \leq n}$ soit orthonormé dans (E,((.|.))).
- I-3 Matrices diagonalisables de rang 1 Soit A une matrice de rang 1 définie par $A = X^t Y$, soit a le réel ${}^t XY$.
 - a) Démontrer que la matrice A annule un polynôme de degré 2. En déduire les valeurs propres possibles de A.
 - b) Pour quelles valeurs du réel a la matrice A est-elle diagonalisable?
 - c) **EXEMPLE**: Considérer le cas suivant :

$$n=3,\;\;X=\left(egin{array}{c}1\0\1\end{array}
ight),\;\;Y=\left(egin{array}{c}1\0\lpha\end{array}
ight),\;\;lpha\;\;{
m est}\;\;{
m un}\;\;{
m r\'eel}.$$

Discuter la diagonalisation de $A = X^t Y$ suivant les valeurs de α .

d) Démontrer que les matrices diagonalisables de rang 1 engendrent E.

DEUXIÈME PARTIE

Étude d'un endomorphisme

Soient A, B deux matrices de E, soit $\Phi_{A,B}$ l'endomorphisme de E défini par la relation :

$$\Phi_{A,B}(M) = AM^t B$$

Cette partie a pour but d'établir des propriétés de l'endomorphisme $\Phi_{A,B}$.

II-1 Rang de l'endomorphisme $\Phi_{A,B}$

Déterminer en fonction des rang r et s des matrices A et B, le rang de l'endomorphisme $\Phi_{A,B}$.

II-2 Vecteurs propres de $\Phi_{A,B}$

- a) Démontrer que si V et W sont des vecteurs propres des matrices A et B, la matrice V^tW est un vecteur propre de $\Phi_{A,B}$.
- b) Caractériser les matrices de rang 1 qui appartiennent au noyau de $\Phi_{A,B}$.
- c) Soit X^tY un matrice de rang 1 vecteur propre associé à la valeur propre μ , différente de zéro, de $\Phi_{A,B}$. Est-ce que X et Y sont des vecteurs propres de A et B?
- d) Démontrer que si A et B sont diagonalisables, l'endomorphisme $\Phi_{A,B}$ est aussi diagonalisable. Calculer alors la trace de $\Phi_{A,B}$.

e) Déterminer les valeurs propres et les vecteurs propres de $\Phi_{A,B}$, dans le cas suivant :

$$n=2, \ A=B=\left(egin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right)$$

II-3 Propriétés d'orthogonalité de $\Phi_{A,B}$

- a) L'endomorphisme $\phi_{A,B}$ est supposé orthogonal dans (E,((.|.))), c'est-à-dire pour toutes matrices M et N de E, $((\phi_{A,B}(M)|\phi_{A,B}(N)))=((M|N))$. En choisissant pour M et N deux matrices égales de rang 1, etablir qu'il y a une relation simple, pour tout couple de vecteurs X et Y de \mathbb{R}^n , entre $|AX|^2.|BY|^2$ et $|X|^2.|Y|^2$.
- b) En déduire une condition nécessaire et suffisante sur A et B pour que l'endomorphisme $\phi_{A,B}$ soit diagonalisable dans (E,((.|.))).

TROISIÈME PARTIE

Expression d'une matrice M de rang r d l'aide de matrices de rang 1.

Désignons par m l'endomorphisme de \mathbb{R}^n associé dans la base canonique à une matrice M de rang r, et par m l'endomorphisme adjoint de m: pour tous vecteurs x et y de \mathbb{R}^n

$$(m^*(x)|y) = (x|m(y)).$$

III-1 Valeurs propres de l'endomorphisme $m^* \circ m$

Démontrer que le rang de l'endomorphisme composé $m^* \circ m$ est égal à r. Établir l'existence d'une base orthonormée de \mathbb{R}^n constituée de vecteurs propres (v_i) , $1 \le i \le n$ de $m^\circ m$ telle que les valeurs propres α_i associées vérifient les relations :

$$\alpha_1 \ge \alpha_2 \ge ... \alpha_r > 0$$
 et si $r < n$, $\alpha_{r+1} = \alpha_{r+2} = ... = \alpha_n = 0$.

- III-2 a) Démontrer que les vecteurs $m(v_i)$ sont orthogonaux deux à deux. Calculer leurs normes.
 - b) En déduire qu'il existe deux bases orthonormées de \mathbb{R}^n , (Y_i) , $1 \le i \le n$ et (Z_i) , $1 \le i \le n$ telles que :

$$M = \sum_{i=1}^{n} \sqrt{\alpha_i} Y_i^t Z_i.$$

QUATRIÈME PARTIE

Approximation d'une matrice de tana r par une matrice de rang inférieur s dans E,((.|.)).

La matrice M de rang r est donnée ainsi qu'un entier s vérifiant s < r, le but de cette partie est de déterminer une matrice P qui rende minimum la distance de M à l'ensemble R_s des matrices de rang inférieur ou égal à s. La distance de la matrice M à R_s est définie par la relation :

$$d(M, R_s) = \inf\{ ||M - N|| / N \in R_s \}.$$

Il sera admis dans la suite que si N est une matrice de rang q, et M une matrice de rang r, la suite décroissante (γ_i) des valeurs propres de la matrice ${}^t\!(M-N)(M-N)$ vérifie pour i, $1 \le i \le n-q$, l'inégalité :

$$\gamma_i \geq \alpha_{i+q}$$
,

où α_i est la suite décroissante des valeurs propres de ${}^t\!MM$.

IV-1 Résolution du problème d'approximation

Le rang r de la matrice M est supposé supérieur strictement à 1. Soit s un entier tel que 0 < s < r.

a) Démontrer l'inégalité:

$$d(M, R_s) \le (\alpha_{s+1} + \dots + \alpha_r)^{\frac{1}{2}},$$

les α_i sont les valeurs propres de la matrice ${}^t\!MM$.

- b) Soit N une matrice de R_s , comparer $||M N||^2$ et $\alpha_{s+1} + ... + \alpha_r$.
- c) En déduire la valeur de $d(M, R_s)$. Existe-t-il une matrice P de R_s telle que $\|M P\| = d(M, R_s)$?
- d) Est-ce que R_s est un sous-ensemble fermé de E?

IV-2 Approximation par une matrice symétrique

Soit s un entier, $1 \le s \le n$; soit S_s , l'ensemble des matrices symétriques de rang inférieur ou égal à s. Soient A et B deux matrices respectivement symétrique et antisymétrique.

- a) Que vaut ((A|B))?
- b) Démontrer qu'il existe une matrice symétrique U appartenant à S_s , approchant A au plus près. Évaluer $\|A U\|$ à l'aide des valeurs propres λ_i de A ($|\lambda| \geq |\lambda| \geq ... \geq |\lambda|$. A quelle condition y-a-t-il unicité de la matrice U?
- c) Soit M une matrice de E, M = A + B avec $A = {}^t\!A$, $B = -{}^t\!B$. Démontrer qu'il existe une unique matrice symétrique V appartenant à S_s , approchant M au plus près. La caractériser et donner la valeur de $d(M, S_s)$.

FIN DU PROBLÈME